Imágenes de páginas
PDF
EPUB

of sulphuric acid and sulphate of mercury, a portion was reabsorbed, but the rest remained on it without mixing.

Liquid sulphurous acid is very limpid and colourless, and highly fluid. Its refractive power, obtained by comparing it in water and other media, with water contained in a similar tube, appeared to be nearly equal to that of water. It does not solidify or become adhesive at a temperature of 0o F. When a tube containing it was opened, the contents did not rush out as with explosion, but a portion of the liquid evaporated rapidly, cooling another portion so much as to leave it in the fluid state at common barometric pressure. It was, however, rapidly dissipated, not producing visible fumes, but producing the odour of pure sulphurous acid, and leaving the tube quite dry. A portion of the vapour of the fluid received over a mercurial bath, and examined, proved to be sulphurous acid gas. A piece of ice dropped into the fluid instantly made it boil, from the heat communicated by it.

To prove in an unexceptionable manner that the fluid was pure sulphurous acid, some sulphurous acid gas was carefully prepared over mercury, and a long tube perfectly dry, and closed at one end, being exhausted, was filled with it: more sulphurous acid was then thrown in by a condensing syringe, till there were three or four atmospheres; the tube remained perfectly clear and dry, but on cooling one end to 0°, the fluid sulphurous acid condensed, and in all its characters was like that prepared by the former process.

Sulphurous acid vapour exerts a pressure of about two atmospheres at 45° F. Its specific gravity was nearly 1.42. Sulphuretted Hydrogen. A tube being bent, and sealed at the shorter end, strong muriatic acid was poured in through a small funnel, so as nearly to fill the short leg without soiling the long one. A piece of platinum foil was then crumpled up and pushed in, and upon that were put fragments of sulphuret of iron, until the tube was nearly full. In this way action was prevented until the tube was sealed. If it once commences, it is almost impossible to close the tube in a manner sufficiently strong, because of the pressing out of the gas. When closed, the muriatic acid was made to run on to the sulphuret of iron, and then left for a day or two. At the end of that time, much protomuriate of iron had formed, and on placing the clean end of the tube in a mixture of ice and salt, warming the other end, if necessary, by a little water, sulphuretted hydrogen in the liquid state distilled over.

The liquid sulphuretted hydrogen was colourless, limpid,

and excessively fluid. It did not mix with the rest of the fluid in the tube, which was no doubt saturated, but remained standing on it. When a tube containing it was opened, the liquid immediately rushed into vapour; and this being done under water, and the vapour collected and examined, it proved to be sulphuretted hydrogen gas. As the temperature of a tube containing some of it rose from 0° to 45°, part of the fluid rose in vapour, and its bulk diminished; but there was no other change: it did not seem more adhesive at 0° than at 45°. Its refractive power appeared to be rather greater than that of water: it decidedly surpassed that of sulphurous acid. The pressure of its vapour was nearly equal to 17 atmospheres at the temperature of 50°.

The specific gravity of sulphuretted hydrogen appeared to be 0.9.

Carbonic Acid. The materials used in the production of carbonic acid, were carbonate of ammonia and concentrated sulphuric acid; the manipulation was like that described for sulphuretted hydrogen. Much stronger tubes are, however, required for carbonic acid than for any of the former substances, and there is none which has produced so many or more powerful explosions. Tubes which have held fluid carbonic acid well for two or three weeks together, have, upon some increase in the warmth of the weather, spontaneously exploded with great violence; and the precautions of glass masks, goggles, &c. which are at all times necessary in pursuing these experiments, are particularly so with carbonic

acid.

Carbonic acid is a limpid colourless body, extremely fluid, and floating upon the other contents of the tube. It distils readily and rapidly at the difference of temperature between 32° and 0°. Its refractive power is much less than that o. water. No diminution of temperature to which I have been able to submit it, has altered its appearance. In endeavouring to open the tubes at one end, they have uniformly burst into fragments, with powerful explosions.

Its vapour exerted a pressure of 36 atmospheres, at a temperature of 32°.

Euchlorine. Fluid euchlorine was obtained by inclosing chlorate of potash and sulphuric acid in a tube, and leaving them to act on each other for 24 hours. In that time there had been much action, the mixture was of a dark reddishbrown, and the atmosphere of a bright yellow colour. The mixture was then heated up to 100°, and the unoccupied

end of the tube cooled to 0°; by degrees the mixture lost its dark colour, and a very fluid ethereal looking substance condensed. It was not miscible with a small portion of the sulphuric acid which lay beneath it; but when returned on to the mass of salt and acid, it was gradually absorbed, rendering the mixture of a much deeper colour even than itself.

Euchlorine thus obtained is a very fluid transparent substance, of a deep yellow colour. A tube containing a portion of it in the clean end, was opened at the opposite extremity; there was a rush of euchlorine vapour, but the salt plugged up the aperture: whilst clearing this away, the whole tube burst with a violent explosion, except the small end in a cloth in my hand, where the euchlorine previously lay, but the fluid had all disappeared.

Nitrous Oxide.Some nitrate of ammonia, previously made as dry as could be by partial decomposition, by heat in the air, was sealed up in a bent tube, and then heated in one end, the other being preserved cool. By repeating the distillation once or twice in this way, it was found, on after-examination, that very little of the salt remained undecomposed. The process requires care. I have had many explosions occur with very strong tubes, and at considerable risk.

When the tube is cooled, it is found to contain two fluids, and a very compressed atmosphere. The heavier fluid, on examination, proved to be water, with a little acid and nitrous oxide in solution; the other was nitrous oxide. It appears in a very liquid, limpid, colourless state; and so volatile, that the warmth of the hand generally makes it disappear in vapour. The application of ice and salt condenses abundance of it into the liquid state again. It boils readily by the dif ference of temperature between 50° and 0°. It does not appear to have any tendency to solidify at 10°. Its refractive power is very much less than that of water, and less than any fluid that has yet been obtained in these experiments, or than any known fluid. A tube being opened in the air, the nitrous oxide immediately bursts into vapour.

[ocr errors]

The pressure of its vapour is equal to above 50 atmospheres at 45°. Cyanogen. Some pure cyanuret of mercury was heated until perfectly dry. A portion was then enclosed in a green glass tube, in the same manner as in the former instances, and being collected to one end, was decomposed by heat, whilst the other end was cooled. The cyanogen soon appeared as a liquid: it was limpid, colourless, and very fluid;

Its re

A

not altering its state at the temperature of 0°. fractive power is rather less, perhaps, than that of water. tube containing it being opened in the air, the expansion within did not appear to be very great; and the liquid passed with comparative slowness into the state of vapour, producing great cold. The vapour, being collected over mercury, proved to be pure cyanogen.

A tube was sealed up with cyanuret of mercury at one end, and a drop of water at the other; the fluid cyanogen was then produced in contact with the water. It did not mix, at least in any considerable quantity, with that fluid, but floated on it, being lighter, though apparently not so much so as ether would be. In the course of some days, action had taken place, the water had become black, and changes, probably such as are known to take place in an aqueous solution of cyanogen, occurred. The pressure of the vapour of cyanogen appeared to be 2.6 or 3.7 atmospheres at 45° Fahr. Its specific gravity was nearly 0.9.

Ammonia.-When dry chloride of silver is put into ammoniacal gas, as dry as it can be made, it absorbs a large quantity of it; 100 grains condensing above 130 cubical inches of the gas but the compound thus formed is decomposed by a temperature of 100° Fahr. or upwards. A portion of this compound was sealed up in a bent tube, and heated in one leg, whilst the other was cooled by ice or water. compound thus heated under pressure, fused at a comparatively low temperature, and boiled up, giving off ammoniacal gas, which condensed at the opposite end into a liquid.

The

Liquid ammonia thus obtained was colourless, transparent, and very fluid. Its refractive power surpassed that of any other of the fluids described, and that also of water itself. When the chloride of silver is allowed to cool, the ammonia immediately returns to it, combining with it, and producing the original compound. During this action a curious combination of effects takes place: as the chloride absorbs the ammonia, heat is produced, the temperature rising up nearly to 100°; whilst a few inches off, at the opposite end of the tube, considerable cold is produced by the evaporation of the fluid. When the whole is retained at the temperature of 60°, the ammonia boils till it is dissipated and re-combined. The pressure of the vapour of ammonia is equal to about 6.5 atmospheres at 50°. Its specific gravity was 0.76. Muriatic Acid. When made from pure muriate of ammonia and sulphuric acid, liquid muriatic acid is obtained colourless, as Sir Humphry Davy had anticipated. Its re

fractive power is greater than that of nitrous oxide, but less than that of water; it is nearly equal to that of carbonic acid, The pressure of its vapour at the temperature of 50° is equal to about 40 atmospheres.

Chlorine.-The refractive power of fluid chlorine is rather less than that of water. The pressure of its water at 60° is nearly equal to four atmospheres.

Mr. Faraday made many similar experiments on other gases, though he could not succeed in condensing any others than those mentioned.

Observations on the Migration of Birds. By EDWARD JENNER, M.D. Communicated by the Rev. G. Č. JENNER.

Ir is not my intention, in the following pages, to give a general history of the migration of birds. The order in which they appear and disappear, their respective habits, and many other observations, have been given with considerable accuracy by several naturalists, who have paid attention to this very curious subject. It is with a view of representing some facts, hitherto unnoticed, chiefly with respect to the cause, which excites the bird, at certain seasons of the year, to quit one country for another, that I communicate the fol lowing pages to this learned body.

But before I proceed to state my observations on this head, it may be necessary to adduce some arguments, first, in support of the reality of migration, the fact itself not being generally admitted; and, secondly, against the hypothesis of a state of torpor, or what has been called the hibernating system.

In the first place, the ability of birds to take immensely long flights is proved by the observations of almost every person conversant with the seas. To the many instances already recorded, I shall add the following:

[ocr errors]

My late nephew, Lieutenant Jenner, on his passage to Newfoundland, saw, on the 20th of May, the hobby hawk. It came on board, and was secured. The day following a swallow came on board. At this time the ship was steering a course direct for that island, and was not within the distance of a hundred leagues of any land. His brother, the Rev. G. C. Jenner, in crossing the Atlantic, observed an owl (of what species he could not precisely ascertain, but he believes it to be the common brown owl,) gliding over the ocean with as much apparent ease as if it had been seeking for a mouse among its native fields. Wild geese have fre

« AnteriorContinuar »